

Course Syllabus

1	Course title	Theory of Special Relativity					
2	Course number	0302360					
3	Credit hours	2h					
3	Contact hours (theory, practical)	2h, 0h					
4	Prerequisites/corequisites	0302351					
5	Program title	B.Sc. Physics					
6	Program code	0302					
7	Awarding institution	University of Jordan					
8	School	School of Science					
9	Department	Physics					
10	Course level	Bachelor					
11	Year of study and semester (s)	3 rd year					
12	Other department (s) involved in teaching the course						
13	Main teaching language	English					
14	Delivery method	✓ Face to face learning □Blended □Fully online					
15	Online platforms(s)	☑Moodle ☑Microsoft Teams □Skype □Zoom □Others					
16	Issuing/Revision Date	2024					

17 Course Coordinator:

Name: Dr. Khaled Bodoor	Contact hours: 12:30-1:30 pm Sun,Tue and by appointment
Office number:	Phone number: 22023
Email: kbodoor@ju.edu.jo	

18 Other instructors:

Name:
Office number:
Phone number:
Email:
Contact hours:
Name:
Office number:
Phone number:
Email:
Contact hours:

19 Course Description:

Unification of space and time (space-time), inertial frames of reference, Lorentz transformation, length contraction and time dilation, Relativity of simultaneity, time travel, causality, unification of momentum and energy, transformation of mass and energy, preliminary introduction to curved space: general relativity.

20 Course aims and outcomes:

A- Aims:

This course is a basic introduction to the special theory of relativity. After presenting Newtonian mechanics and Galilean relativity and frames of reference, experiments that expose the limitations of Newtonian mechanics are described in detail, including the Michelson-Morley experiment and experiments revealing the speed of light as the upper limit on speed of particles and signals. Einstein's two postulates and thought experiments are presented, from which the formulas of Special Relativity are derived in detail, including relativity of simultaneity, length contraction, time dilation, addition of velocities, etc. Relativistic dynamics are then introduced. World lines and four vectors are also introduced. Then, applications and technical consequences of Special Relativity are introduced and discussed. Providing students with a scientific details and deep understanding of physics oceanography for further studies or work in physics, oceanography, engineer and technology.

B- Students Learning Outcomes (SLOs):

For purposes of mapping the course SLOs to the physics program SLOs, at the successful completion of the physics program, graduates are expected to be able to:

SLO (1) Master professionally a broad set of knowledge concerning the fundamentals in the basic areas of physics: Quantum Mechanics, Classical Mechanics, Electrostatics and Magnetism, Thermal Physics, Optics, Theory of Special Relativity, Mathematical Physics, Electronics.

SLO (2) Apply knowledge of mathematics and fundamental concepts in the basic areas of physics to identify and solve physics related problems.

SLO (3) Utilize computers and available software in both data collections and data analysis.

SLO (4) Utilize standard laboratory equipment, modern instrumentation, and classical techniques to design and conduct experiments as well as to analyze and interpret data.

SLO (5) Develop a recognition of the need and ability to engage in life-long learning.

SLO (6) Demonstrate ability to use techniques, skills, and modern scientific tools necessary for professional practice.

SLO (7) Communicate clearly and effectively in both written and oral forms.

SLO (8) Apply proficiently team-work skills and employ team-based learning strategies.

SLO (9) Apply professional and ethical responsibility to society

Course SLOs	(1)	(2)				1 - 1			SLO
		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Understand observers, events, frames		√					√		
of reference, and differentiate	•	•					•		
between inertial and non-inertial									
frames.									
Understand the difference between	\checkmark	\checkmark					\checkmark		
Newtonian and Galilean concepts of									
space and time. Perform Galilean									
transformations between different									
inertial frames of reference.									
Understand the Michelson-Morley	\checkmark	\checkmark					\checkmark		
experiment and its main result,									
namely, that the speed of light is									
isotropic in any given inertial frame.									
Understand the experimental	\checkmark	\checkmark					\checkmark		
evidence for departures from									
Newtonian mechanics and Galilean									
relativity for speeds approaching the									
speed of light. Understand the									
experimental evidence for the speed									
of light as an upper speed limit. Be able to state the fundamental									
postulates of special relativity.	\checkmark	✓					\checkmark		
Understand qualitatively the	√	√							
distinction between covariance and	v	×					√		
invariance of physical quantities.									
Be able to explain with a thought									
experiment the origin of the relativity									
of simultaneity. Be able to derive time									
dilation, length contraction, and other									
relativistic effects using light clocks									
and thought experiments. Derive									
lorentz transformations. Be able to									
perform velocity addition									
relativistically. Be able to understand									
the new concept of spacetime.									
Be familiar with the concept of a	\checkmark	 ✓ 					\checkmark		
space-time diagram and its use to									
solve elementary problems in special relativity. Understand the									
four-vector construct and its use in									

مركـز الاعـتماد وضمان الجودة				
relativistic calculations. Understand the new relativistic formulations and know expressions for relativistic energy, momentum, mass, force and show their relationship to their newtonian counterparts. Understand and derive Einstein's mass energy relationship.				

21. Topic Outline and Schedule:

Week	Lecture	Торіс	Student Learning Outcome	Learning Methods (Face to Face/Blended/ Fully Online)	Platform	Synchronous / Asynchronous Lecturing	Evaluation Methods	Resources
1	1.1	Chapter 1 The experimental		Face to Face			Exams	
2	1.2 2.1	background of the						
2	2.2	theory of special						
3	3.1	relativity						
	3.2							
4	4.1 4.2			-				
5	4.2 5.1			-				
5	5.2							
6	6.1	Chapter 2						
	6.2	RELATIVISTIC KINEMATICS						
7	7.1	KINEWIATICS						
8	7.2 8.1			-				
0	8.2			-				
9	9.1							
	9.2							
10	10.1	Chapter 3						
11	10.2	RELATIVISTIC DYNAMICS						
11	11.1 11.2	Dirivines		-				
12	12.1							
	12.2							
13	13.1	CHAPTER IV]				
	13.2	RELATIVITY AND ELECTROMAGNETISM						
14	14.1			4				
15	14.2 15.1			{				
15	15.2			{				

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
First Exam	20%				Paper Exam
Midterm Exam	30%				Paper Exam
Final Exam	50%	All topics			Paper Exam

23 Course Requirements

(e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

Textbook, computer, Internet access, Microsoft Teams

24 Course Policies:

A- Attendance policies:

Students are expected to attend all classes. Absence should not exceed 15%.

B- Absences from exams and submitting assignments on time:

Exam makeups will be arranged for students with valid absence excuses.

C- Health and safety procedures:

Students are required to abide by all mandated health and safety procedures.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

Cheating, plagiarism, and misbehavior will be dealt with according to University regulations.

E- Grading policy:

First: 20%, Midterm Exam: 30%, Final Exam: 50%.

F- Available university services that support achievement in the course:

Microsoft Teams, E-Learning platform, Moodle.

مركـز الاعتماد

وضمان الجودة A- Required book(s), assigned reading and audio-visuals:

1) Resnick, Robert. Introduction to Special Relativity. New York: Wiley, 1968. ISBN: 9780471717256 (required)

2) French, Anthony Philip. *Special Relativity*. New York, NY: Norton, 1968. ISBN: 9780393097931.

B- Recommended books, materials, and media:

26 Additional information:

Name of Course Coordinator: Dr. Khaled Bodoor	Signature:	Date: 2024	
Head of Curriculum Committee/Department:	Sig	nature:	
Head of Department:		Signature:	
Head of Curriculum Committee/Faculty:		Signature:	
Dean:	Signature:		